Induced b-Carotene Synthesis Driven by Triacylglycerol Deposition in the Unicellular Alga Dunaliella bardawil

نویسندگان

  • Said Rabbani
  • Peter Beyer
  • Johannes v. Lintig
  • Philippe Hugueney
چکیده

Under stress conditions such as high light intensity or nutrient starvation, cells of the unicellular alga Dunaliella bardawil overproduce b-carotene, which is accumulated in the plastids in newly formed triacylglycerol droplets. We report here that the formation of these sequestering structures and b-carotene are interdependent. When the synthesis of triacylglycerol is blocked, the overproduction of b-carotene is also inhibited. During overproduction of b-carotene no up-regulation of phytoene synthase or phytoene desaturase is observed on the transcriptional or translational level, whereas at the same time acetyl-CoA carboxylase, the key regulatory enzyme of acyl lipid biosynthesis, is increased, at least in its enzymatic activity. We conclude that under normal conditions the carotenogenic pathway is not maximally active and may be appreciably stimulated in the presence of sequestering structures, creating a plastid-localized sink for the end product of the carotenoid biosynthetic pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induced beta-carotene synthesis driven by triacylglycerol deposition in the unicellular alga dunaliella bardawil

Under stress conditions such as high light intensity or nutrient starvation, cells of the unicellular alga Dunaliella bardawil overproduce beta-carotene, which is accumulated in the plastids in newly formed triacylglycerol droplets. We report here that the formation of these sequestering structures and beta-carotene are interdependent. When the synthesis of triacylglycerol is blocked, the overp...

متن کامل

Analysis of carotenogenic genes promoters and WRKY transcription factors in response to salt stress in Dunaliella bardawil

The unicellular alga Dunaliella bardawil is a highly salt-tolerant organism, capable of accumulating glycerol, glycine betaine and β-carotene under salt stress, and has been considered as an excellent model organism to investigate the molecular mechanisms of salt stress responses. In this study, several carotenogenic genes (DbCRTISO, DbZISO, DbLycE and DbChyB), DbBADH genes involved in glycine ...

متن کامل

Carotene and Antioxidant Capacity of Dunaliella Salina Strains

Beta-carotene is a terpenoid pigment that is highly valuable due to its nutritional benefit as a precursor of vitamin A and its antioxidant properties. A marine green alga Dunaliella salina is well known for high carotene, with above 95% β-carotene, under growth-limiting conditions. Carotene contents are different among D. salina strains and under different culture conditions. Selecting a Dunal...

متن کامل

Effects of Salinity and Light on Growth of Dunaliella Isolates

Dunaliella salina, halotorelant unicellular green algae, is the main natural source of beta-carotene. Several strains of local Dunaliella salina were isolated. Together with Dunaliella bardawil DCCBC 15 and Dunaliella salina CCAP 19/18, the strains were examined for their growth under the effects of salinities (1 M, 1.5 M and 2 M) and light intensities (50, 100 and 150 μmol photon/m/s). The res...

متن کامل

beta-carotene production enhancement by UV-A radiation in Dunaliella bardawil cultivated in laboratory reactors.

beta-carotene is an antioxidant molecule of commercial value that can be naturally produced by certain microalgae that mostly belong to the genus Dunaliella. So far, nitrogen starvation has been the most efficient condition for enhancing beta-carotene accumulation in Dunaliella. However, while nitrogen starvation promotes beta-carotene accumulation, the cells become non-viable; consequently und...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998